UoW: Multi-task Learning Gaussian Process for Semantic Textual Similarity
نویسنده
چکیده
We report results obtained by the UoW method in SemEval-2014’s Task 10 – Multilingual Semantic Textual Similarity. We propose to model Semantic Textual Similarity in the context of Multi-task Learning in order to deal with inherent challenges of the task such as unbalanced performance across domains and the lack of training data for some domains (i.e. unknown domains). We show that the Multi-task Learning approach outperforms previous work on the 2012 dataset, achieves a robust performance on the 2013 dataset and competitive results on the 2014 dataset. We highlight the importance of the challenge of unknown domains, as it affects overall performance substantially.
منابع مشابه
UoW: NLP techniques developed at the University of Wolverhampton for Semantic Similarity and Textual Entailment
This paper presents the system submitted by University of Wolverhampton for SemEval-2014 task 1. We proposed a machine learning approach which is based on features extracted using Typed Dependencies, Paraphrasing, Machine Translation evaluation metrics, Quality Estimation metrics and Corpus Pattern Analysis. Our system performed satisfactorily and obtained 0.711 Pearson correlation for the sema...
متن کاملUOW: Semantically Informed Text Similarity
The UOW submissions to the Semantic Textual Similarity task at SemEval-2012 use a supervised machine learning algorithm along with features based on lexical, syntactic and semantic similarity metrics to predict the semantic equivalence between a pair of sentences. The lexical metrics are based on wordoverlap. A shallow syntactic metric is based on the overlap of base-phrase labels. The semantic...
متن کاملUNIBA: Combining Distributional Semantic Models and Word Sense Disambiguation for Textual Similarity
This paper describes the UNIBA team participation in the Cross-Level Semantic Similarity task at SemEval 2014. We propose to combine the output of different semantic similarity measures which exploit Word Sense Disambiguation and Distributional Semantic Models, among other lexical features. The integration of similarity measures is performed by means of two supervised methods based on Gaussian ...
متن کاملNUIG-UNLP at SemEval-2016 Task 1: Soft Alignment and Deep Learning for Semantic Textual Similarity
We present a multi-feature system for computing the semantic similarity between two sentences. We introduce the use of soft alignment for computing text similarity, and also evaluate different methods to produce it. The main features used by our system are based on alignment and Explicit Semantic Analysis. Our system was above the median scores for 4 out of the 5 datasets at SemEval 2016 STS Ta...
متن کاملECNU: Using Traditional Similarity Measurements and Word Embedding for Semantic Textual Similarity Estimation
This paper reports our submissions to semantic textual similarity task, i.e., task 2 in Semantic Evaluation 2015. We built our systems using various traditional features, such as string-based, corpus-based and syntactic similarity metrics, as well as novel similarity measures based on distributed word representations, which were trained using deep learning paradigms. Since the training and test...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014